A Note on the Contribution of Dispersive Fluxes to Momentum Transfer within Canopies
نویسندگان
چکیده
Dispersive flux terms are formed when the time-averaged mean momentum equation is spatially averaged within the canopy volume. These fluxes represent a contribution to momentum transfer arising from spatial correlations of the time-averaged velocity components within a horizontal plane embedded in the canopy sublayer (CSL). Their relative importance to CSL momentum transfer is commonly neglected in model calculations and in nearly all field measurement interpretations. Recent wind-tunnel studies suggest that these fluxes may be important in the lower layers of the canopy; however, no one study considered their importance across all regions of the canopy and for a wide range of canopy roughness densities. Using detailed laser Doppler anemometry measurements conducted in a model canopy composed of cylinders within a large flume, we demonstrate that the dispersive fluxes are only significant (i.e., > 10%) for sparse canopies. These fluxes are in the same direction as the turbulent flux in the lower layers of the canopy but in the opposite direction near the canopy top. For dense canopies, we show that the dispersive fluxes are < 5% at all heights. These results appear to be insensitive to the Reynolds number (at high Reynolds numbers).
منابع مشابه
Experimental Investigation in Pool Boiling Heat Transfer of Pure/Binary Mixtures and Heat Transfer Correlations
Nucleate pool boiling heat transfer coefficient have been experimentally measured on a horizontal rod heater for various liquid binary mixtures. Measurements are based on more than three hundred data points on a wide range of concentrations and heat fluxes. In this investigation, it has been confirmed that the heat transfer coefficient in boiling solutions are regularly less than those in p...
متن کاملInvestigation of Charged Particles Radiation Moving in a Homogeneous Dispersive Medium (TECHNICAL NOTE)
In this work, we use Drude-Lorents model description to study the radiation of a charged particles moving in a homogeneous dispersive medium. A suitable quantized electromagnetic field for such medium is utilized to obtain proper equations for energy loss of the particle per unit length. The energy loss is separately calculated for transverse and longitudinal components of the filed operators. ...
متن کاملMomentum Transfer within Canopies
To understand the basic characteristics of the observed S-shaped wind profile and the exponential flux profile within forest canopies, three hypotheses are postulated. The relationship between these fundamental profiles is well established by combining the postulated hypotheses with momentum equations. Robust agreements between theoretical predictions and observations indicate that the nature o...
متن کاملAnalysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign
Intermittent coherent structures can be responsible for a large fraction of the exchange between a forest canopy and the atmosphere. Quantifying their contribution to momentum and heat fluxes is necessary to interpret measurements of trace gases and aerosols within and above forest canopies. The primary objective of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field camp...
متن کاملNumerical Simulation of Circular Synthetic Jets with Asymmetric Forcing Profiles
This paper presents a detailed numerical simulation of the fluid flow characteristics of a synthetic jet. The fluid motion is caused by an oscillating piston within a circular channel which is connected to a larger cavity. The oscillating piston utilized a sawtooth forcing profile, and the solution encompassed the channel geometry, the cavity, and the fluid domain external to the cavity. Moment...
متن کامل